3.462 \(\int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt{\sec (c+d x)} \, dx\)

Optimal. Leaf size=110 \[ \frac{2 a (3 A+B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a (A+B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a B \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}} \]

[Out]

(2*a*(A + B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*(3*A + B)*Sqrt[Cos[c +
d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a*B*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.183918, antiderivative size = 110, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.194, Rules used = {2960, 3996, 3787, 3771, 2639, 2641} \[ \frac{2 a (3 A+B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a (A+B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a B \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]

[Out]

(2*a*(A + B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*(3*A + B)*Sqrt[Cos[c +
d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a*B*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 2960

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(
d + c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3996

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.)
 + (A_)), x_Symbol] :> Simp[(A*a*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(f*n), x] + Dist[1/(d*n), Int[(d*Csc[e + f*x
])^(n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B},
 x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int (a+a \cos (c+d x)) (A+B \cos (c+d x)) \sqrt{\sec (c+d x)} \, dx &=\int \frac{(a+a \sec (c+d x)) (B+A \sec (c+d x))}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a B \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{2}{3} \int \frac{-\frac{3}{2} a (A+B)-\frac{1}{2} a (3 A+B) \sec (c+d x)}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 a B \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+(a (A+B)) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{3} (a (3 A+B)) \int \sqrt{\sec (c+d x)} \, dx\\ &=\frac{2 a B \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\left (a (A+B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx+\frac{1}{3} \left (a (3 A+B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a (A+B) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{2 a (3 A+B) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 a B \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 1.23907, size = 148, normalized size = 1.35 \[ \frac{2 a e^{-i d x} \sqrt{\sec (c+d x)} (\cos (d x)+i \sin (d x)) \left (-i (A+B) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};-e^{2 i (c+d x)}\right )+\cos (c+d x) (B \sin (c+d x)+3 i (A+B))+(3 A+B) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]

[Out]

(2*a*Sqrt[Sec[c + d*x]]*(Cos[d*x] + I*Sin[d*x])*((3*A + B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - I*(A
 + B)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + C
os[c + d*x]*((3*I)*(A + B) + B*Sin[c + d*x])))/(3*d*E^(I*d*x))

________________________________________________________________________________________

Maple [B]  time = 2.699, size = 321, normalized size = 2.9 \begin{align*} -{\frac{2\,a}{3\,d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 4\,B\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+3\,A{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}-3\,A\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +B\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) -3\,B{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}-2\,B \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x)

[Out]

-2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(4*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+3*
A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)-3*A*(sin
(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+B*(sin(1/2*d*x
+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*EllipticE(cos(1/2*
d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)-2*B*sin(1/2*d*x+1/2*c)^2*cos
(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)
^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \cos \left (d x + c\right ) + A\right )}{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{\sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (B a \cos \left (d x + c\right )^{2} +{\left (A + B\right )} a \cos \left (d x + c\right ) + A a\right )} \sqrt{\sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((B*a*cos(d*x + c)^2 + (A + B)*a*cos(d*x + c) + A*a)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a \left (\int A \sqrt{\sec{\left (c + d x \right )}}\, dx + \int A \cos{\left (c + d x \right )} \sqrt{\sec{\left (c + d x \right )}}\, dx + \int B \cos{\left (c + d x \right )} \sqrt{\sec{\left (c + d x \right )}}\, dx + \int B \cos ^{2}{\left (c + d x \right )} \sqrt{\sec{\left (c + d x \right )}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)**(1/2),x)

[Out]

a*(Integral(A*sqrt(sec(c + d*x)), x) + Integral(A*cos(c + d*x)*sqrt(sec(c + d*x)), x) + Integral(B*cos(c + d*x
)*sqrt(sec(c + d*x)), x) + Integral(B*cos(c + d*x)**2*sqrt(sec(c + d*x)), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \cos \left (d x + c\right ) + A\right )}{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{\sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)